Ted Cole Ted Cole
0 Course Enrolled • 0 Course CompletedBiography
便利なProfessional-Data-Engineerトレーニング &合格スムーズProfessional-Data-Engineer資格認定 |高品質なProfessional-Data-Engineer的中合格問題集
10年以上のビジネス経験により、当社のProfessional-Data-Engineerテストトレントは、顧客の購入体験を非常に重要視していました。電子製品の購入速度を心配する必要はありません。弊社では、Professional-Data-Engineer試験準備の信頼性を長期間にわたって評価および評価し、保証された購入スキームを提案するために尽力しています。
当社PassTestのすべてのProfessional-Data-Engineerトレーニングファイルは、この分野の専門家と教授によって設計されています。教材の品質は保証されています。すべての顧客の実際の状況に応じて、すべての顧客に適した学習計画を作成します。当社からProfessional-Data-Engineer学習教材を購入する場合、Professional-Data-Engineer試験に簡単に合格するための専門的なトレーニングを受けることをお約束します。専門的なトレーニングにより、Professional-Data-Engineer試験に合格し、関連する認定資格を最短で取得します。
>> Professional-Data-Engineerトレーニング <<
Professional-Data-Engineer試験の準備方法|便利なProfessional-Data-Engineerトレーニング試験|完璧なGoogle Certified Professional Data Engineer Exam資格認定
最近のレポートによると、複数のスキル証明書を所有している人は、上司によって昇格されやすくなっています。日常から離れて理想的な生活を求めるには、職場で高い得点を獲得し、試合に勝つために余分なスキルを習得しなければなりません。 Professional-Data-Engineer試験問題は、あなたの夢をかなえるのに役立ちます。さらに、Professional-Data-Engineerガイドトレントに関する詳細情報を提供するWebサイトにアクセスできます。 Professional-Data-Engineer試験問題を試してみてください。そうすれば、Professional-Data-Engineer試験に合格できることがわかります。
Google Certified Professional Data Engineer Exam 認定 Professional-Data-Engineer 試験問題 (Q298-Q303):
質問 # 298
All Google Cloud Bigtable client requests go through a front-end server ______ they are sent to a Cloud Bigtable node.
- A. once
- B. only if
- C. before
- D. after
正解:C
解説:
In a Cloud Bigtable architecture all client requests go through a front-end server before they are sent to a Cloud Bigtable node.
The nodes are organized into a Cloud Bigtable cluster, which belongs to a Cloud Bigtable instance, which is a container for the cluster. Each node in the cluster handles a subset of the requests to the cluster.
When additional nodes are added to a cluster, you can increase the number of simultaneous requests that the cluster can handle, as well as the maximum throughput for the entire cluster.
Reference: https://cloud.google.com/bigtable/docs/overview
質問 # 299
You operate an IoT pipeline built around Apache Kafka that normally receives around 5000 messages per second. You want to use Google Cloud Platform to create an alert as soon as the moving average over 1 hour drops below 4000 messages per second. What should you do?
- A. Use Kafka Connect to link your Kafka message queue to Cloud Pub/Sub. Use a Cloud Dataflow template to write your messages from Cloud Pub/Sub to BigQuery. Use Cloud Scheduler to run a script every five minutes that counts the number of rows created in BigQuery in the last hour. If that number falls below
4000, send an alert. - B. Use Kafka Connect to link your Kafka message queue to Cloud Pub/Sub. Use a Cloud Dataflow template to write your messages from Cloud Pub/Sub to Cloud Bigtable. Use Cloud Scheduler to run a script every hour that counts the number of rows created in Cloud Bigtable in the last hour. If that number falls below 4000, send an alert.
- C. Consume the stream of data in Cloud Dataflow using Kafka IO. Set a sliding time window of 1 hour every 5 minutes. Compute the average when the window closes, and send an alert if the average is less than 4000 messages.
- D. Consume the stream of data in Cloud Dataflow using Kafka IO. Set a fixed time window of 1 hour. Compute the average when the window closes, and send an alert if the average is less than 4000 messages.
正解:B
質問 # 300
You have spent a few days loading data from comma-separated values (CSV) files into the Google BigQuery table CLICK_STREAM. The column DT stores the epoch time of click events. For convenience, you chose a simple schema where every field is treated as the STRING type. Now, you want to compute web session durations of users who visit your site, and you want to change its data type to the TIMESTAMP. You want to minimize the migration effort without making future queries computationally expensive. What should you do?
- A. Create a view CLICK_STREAM_V, where strings from the column DT are cast into TIMESTAMP values. Reference the view CLICK_STREAM_V instead of the table CLICK_STREAM from now on.
- B. Construct a query to return every row of the table CLICK_STREAM, while using the built-in function to cast strings from the column DT into TIMESTAMP values. Run the query into a destination table NEW_CLICK_STREAM, in which the column TS is the TIMESTAMP type. Reference the table NEW_CLICK_STREAM instead of the table CLICK_STREAM from now on. In the future, new data is loaded into the table NEW_CLICK_STREAM.
- C. Add a column TS of the TIMESTAMP type to the table CLICK_STREAM, and populate the numeric values from the column TS for each row. Reference the column TS instead of the column DT from now on.
- D. Add two columns to the table CLICK STREAM: TS of the TIMESTAMP type and IS_NEW of the BOOLEAN type. Reload all data in append mode. For each appended row, set the value of IS_NEW to true. For future queries, reference the column TS instead of the column DT, with the WHERE clause ensuring that the value of IS_NEW must be true.
- E. Delete the table CLICK_STREAM, and then re-create it such that the column DT is of the TIMESTAMP type. Reload the data.
正解:D
解説:
Topic 1, Flowlogistic Case Study
Company Overview
Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.
Company Background
The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.
Solution Concept
Flowlogistic wants to implement two concepts using the cloud:
* Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads
* Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They also want to use predictive analytics to learn earlier when a shipment will be delayed.
Existing Technical Environment
Flowlogistic architecture resides in a single data center:
* Databases
* 8 physical servers in 2 clusters
* SQL Server - user data, inventory, static data
* 3 physical servers
* Cassandra - metadata, tracking messages
10 Kafka servers - tracking message aggregation and batch insert
* Application servers - customer front end, middleware for order/customs
* 60 virtual machines across 20 physical servers
* Tomcat - Java services
* Nginx - static content
* Batch servers
Storage appliances
* iSCSI for virtual machine (VM) hosts
* Fibre Channel storage area network (FC SAN) - SQL server storage
* Network-attached storage (NAS) image storage, logs, backups
* Apache Hadoop /Spark servers
* Core Data Lake
* Data analysis workloads
* 20 miscellaneous servers
* Jenkins, monitoring, bastion hosts,
Business Requirements
* Build a reliable and reproducible environment with scaled panty of production.
* Aggregate data in a centralized Data Lake for analysis
* Use historical data to perform predictive analytics on future shipments
* Accurately track every shipment worldwide using proprietary technology
* Improve business agility and speed of innovation through rapid provisioning of new resources
* Analyze and optimize architecture for performance in the cloud
* Migrate fully to the cloud if all other requirements are met
Technical Requirements
* Handle both streaming and batch data
* Migrate existing Hadoop workloads
* Ensure architecture is scalable and elastic to meet the changing demands of the company.
* Use managed services whenever possible
* Encrypt data flight and at rest
* Connect a VPN between the production data center and cloud environment SEO Statement We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.
We need to organize our information so we can more easily understand where our customers are and what they are shipping.
CTO Statement
IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO' s tracking technology.
CFO Statement
Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.
質問 # 301
You are deploying a new storage system for your mobile application, which is a media streaming service.
You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of
which can take on multiple values. For example, in the entity 'Movie'the property 'actors'and the
property 'tags' have multiple values but the property 'date released' does not. A typical query
would ask for all movies with actor=<actorname>ordered by date_releasedor all movies with
tag=Comedyordered by date_released. How should you avoid a combinatorial explosion in the
number of indexes?
- A. Set the following in your entity options: exclude_from_indexes = 'date_published'
- B. Manually configure the index in your index config as follows:
- C. Set the following in your entity options: exclude_from_indexes = 'actors, tags'
- D. Manually configure the index in your index config as follows:
正解:D
質問 # 302
Which is the preferred method to use to avoid hotspotting in time series data in Bigtable?
- A. Hashing
- B. Randomization
- C. Field promotion
- D. Salting
正解:C
解説:
By default, prefer field promotion. Field promotion avoids hotspotting in almost all cases, and it tends to make it easier to design a row key that facilitates queries.
Reference: https://cloud.google.com/bigtable/docs/schema-design-time-
series#ensure_that_your_row_key_avoids_hotspotting
質問 # 303
......
Professional-Data-Engineer学習ガイドの教材には、常に卓越性と同義でした。 Professional-Data-Engineer実践ガイドは、さまざまな資格試験に合格するかどうかに関係なく、ユーザーが簡単に目標を達成するのに役立ちます。当社の製品は、必要な学習教材を提供します。もちろん、Professional-Data-Engineerの実際の質問は、ユーザーに試験に関する貴重な経験だけでなく、試験に関する最新情報も提供します。 Professional-Data-Engineerの実用的な教材は、他の教材よりも高い歩留まりをもたらす学習ツールです。決心したら、私たちを選んでください!
Professional-Data-Engineer資格認定: https://www.passtest.jp/Google/Professional-Data-Engineer-shiken.html
このため、Professional-Data-Engineer試験のダンプでは、Professional-Data-Engineer試験に合格するのに役立つ資格試験のいくつかのタイプの質問をまとめています、PassTestが提供した研修ツールはGoogleのProfessional-Data-Engineerの認定試験に向けて学習資料やシミュレーション訓練宿題で、重要なのは試験に近い練習問題と解答を提供いたします、あなたはGoogleのProfessional-Data-Engineer試験に失敗したら、弊社は原因に関わらずあなたの経済の損失を減少するためにもらった費用を全額で返しています、同時に、Professional-Data-Engineer試験の合格に役立つ多くの専門家がProfessional-Data-Engineer実践教材を改訂することをGoogle Certified Professional Data Engineer Exam保証できます、Professional-Data-EngineerテストブレインダンプのPDFバージョンは、お客様にデモを提供します。
酒呑童子は桃を押し倒して襲ってきた、おまえ全然呑んでねえじゃねえか、このため、Professional-Data-Engineer試験のダンプでは、Professional-Data-Engineer試験に合格するのに役立つ資格試験のいくつかのタイプの質問をまとめています、PassTestが提供した研修ツールはGoogleのProfessional-Data-Engineerの認定試験に向けて学習資料やシミュレーション訓練宿題で、重要なのは試験に近い練習問題と解答を提供いたします。
最短ルート Professional-Data-Engineer オンライン版でスキマ時間を有効活用
あなたはGoogleのProfessional-Data-Engineer試験に失敗したら、弊社は原因に関わらずあなたの経済の損失を減少するためにもらった費用を全額で返しています、同時に、Professional-Data-Engineer試験の合格に役立つ多くの専門家がProfessional-Data-Engineer実践教材を改訂することをGoogle Certified Professional Data Engineer Exam保証できます。
Professional-Data-EngineerテストブレインダンプのPDFバージョンは、お客様にデモを提供します。
- Professional-Data-Engineer試験の準備方法|信頼的なProfessional-Data-Engineerトレーニング試験|100%合格率のGoogle Certified Professional Data Engineer Exam資格認定 ⚜ ➠ www.xhs1991.com 🠰に移動し、《 Professional-Data-Engineer 》を検索して、無料でダウンロード可能な試験資料を探しますProfessional-Data-Engineer資格認定
- 有効的な Professional-Data-Engineerトレーニング | 最初の試行で簡単に勉強して試験に合格する - 専門的なGoogle Google Certified Professional Data Engineer Exam ↩ [ www.goshiken.com ]は、[ Professional-Data-Engineer ]を無料でダウンロードするのに最適なサイトですProfessional-Data-Engineerウェブトレーニング
- Professional-Data-Engineer日本語版テキスト内容 🏢 Professional-Data-Engineer日本語版参考資料 👬 Professional-Data-Engineer勉強方法 🌼 ☀ www.jpexam.com ️☀️を入力して➥ Professional-Data-Engineer 🡄を検索し、無料でダウンロードしてくださいProfessional-Data-Engineer最新日本語版参考書
- 有効的な Professional-Data-Engineerトレーニング | 最初の試行で簡単に勉強して試験に合格する - 専門的なGoogle Google Certified Professional Data Engineer Exam 🔲 ⮆ www.goshiken.com ⮄にて限定無料の✔ Professional-Data-Engineer ️✔️問題集をダウンロードせよProfessional-Data-Engineer模擬試験問題集
- Professional-Data-Engineer認定資格試験 🕤 Professional-Data-Engineer日本語版対策ガイド 👽 Professional-Data-Engineer日本語版参考資料 🦩 最新⇛ Professional-Data-Engineer ⇚問題集ファイルは《 jp.fast2test.com 》にて検索Professional-Data-Engineer PDF
- Professional-Data-Engineer試験の準備方法|信頼的なProfessional-Data-Engineerトレーニング試験|100%合格率のGoogle Certified Professional Data Engineer Exam資格認定 🍜 《 www.goshiken.com 》で「 Professional-Data-Engineer 」を検索して、無料でダウンロードしてくださいProfessional-Data-Engineer復習テキスト
- Professional-Data-Engineer学習資料 🏣 Professional-Data-Engineer受験対策 🔀 Professional-Data-Engineer勉強時間 🚃 URL ➥ www.japancert.com 🡄をコピーして開き、➽ Professional-Data-Engineer 🢪を検索して無料でダウンロードしてくださいProfessional-Data-Engineerウェブトレーニング
- Professional-Data-Engineer対応内容 🧯 Professional-Data-Engineer試験復習赤本 🎧 Professional-Data-Engineer認定資格試験 🔌 ⮆ www.goshiken.com ⮄から簡単に➽ Professional-Data-Engineer 🢪を無料でダウンロードできますProfessional-Data-Engineer模擬試験問題集
- Professional-Data-Engineer勉強時間 ⏳ Professional-Data-Engineer日本語版参考資料 🛸 Professional-Data-Engineer勉強方法 🥻 今すぐ⏩ www.xhs1991.com ⏪で[ Professional-Data-Engineer ]を検索し、無料でダウンロードしてくださいProfessional-Data-Engineer学習資料
- Professional-Data-Engineer日本語版テキスト内容 😝 Professional-Data-Engineer日本語版テキスト内容 📥 Professional-Data-Engineer日本語版対策ガイド 🤔 「 www.goshiken.com 」の無料ダウンロード▶ Professional-Data-Engineer ◀ページが開きますProfessional-Data-Engineer日本語サンプル
- Professional-Data-Engineer日本語版対策ガイド ▶ Professional-Data-Engineer受験対策 👕 Professional-Data-Engineer模擬試験問題集 🍚 ( Professional-Data-Engineer )を無料でダウンロード《 www.it-passports.com 》で検索するだけProfessional-Data-Engineer勉強時間
- smartrepair.courses, www.cropmastery.com, ncon.edu.sa, thevinegracecoach.com, korisugakkou.com, omniversity.net, ncon.edu.sa, youwant2learn.com, raay.sa, lms.ait.edu.za
